Copied to
clipboard

?

G = C4218Q8order 128 = 27

5th semidirect product of C42 and Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4218Q8, C43.16C2, C42.347D4, C23.762C24, C4.11(C4⋊Q8), C428C4.54C2, C4.17(C4.4D4), (C22×C4).267C23, C22.472(C22×D4), C22.183(C22×Q8), (C2×C42).1096C22, (C22×Q8).252C22, C2.C42.457C22, C23.67C23.65C2, C2.49(C23.37C23), C2.23(C2×C4⋊Q8), (C2×C4⋊Q8).40C2, (C2×C4).836(C2×D4), (C2×C4).174(C2×Q8), C2.36(C2×C4.4D4), (C2×C4).676(C4○D4), (C2×C4⋊C4).565C22, C22.603(C2×C4○D4), SmallGroup(128,1594)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C4218Q8
C1C2C22C23C22×C4C2×C42C43 — C4218Q8
C1C23 — C4218Q8
C1C23 — C4218Q8
C1C23 — C4218Q8

Subgroups: 420 in 252 conjugacy classes, 132 normal (8 characteristic)
C1, C2, C2 [×6], C4 [×12], C4 [×16], C22, C22 [×6], C2×C4 [×26], C2×C4 [×32], Q8 [×16], C23, C42 [×12], C42 [×8], C4⋊C4 [×16], C22×C4, C22×C4 [×14], C2×Q8 [×24], C2.C42 [×16], C2×C42, C2×C42 [×6], C2×C4⋊C4 [×8], C4⋊Q8 [×8], C22×Q8 [×4], C43, C428C4 [×4], C23.67C23 [×8], C2×C4⋊Q8 [×2], C4218Q8

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×8], C23 [×15], C2×D4 [×6], C2×Q8 [×12], C4○D4 [×8], C24, C4.4D4 [×8], C4⋊Q8 [×4], C22×D4, C22×Q8 [×2], C2×C4○D4 [×4], C2×C4.4D4 [×2], C2×C4⋊Q8, C23.37C23 [×4], C4218Q8

Generators and relations
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=a2b-1, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 74 24 29)(2 75 21 30)(3 76 22 31)(4 73 23 32)(5 67 104 86)(6 68 101 87)(7 65 102 88)(8 66 103 85)(9 78 56 39)(10 79 53 40)(11 80 54 37)(12 77 55 38)(13 63 60 28)(14 64 57 25)(15 61 58 26)(16 62 59 27)(17 50 36 98)(18 51 33 99)(19 52 34 100)(20 49 35 97)(41 108 95 83)(42 105 96 84)(43 106 93 81)(44 107 94 82)(45 115 112 120)(46 116 109 117)(47 113 110 118)(48 114 111 119)(69 122 127 90)(70 123 128 91)(71 124 125 92)(72 121 126 89)
(1 100 60 38)(2 97 57 39)(3 98 58 40)(4 99 59 37)(5 108 111 122)(6 105 112 123)(7 106 109 124)(8 107 110 121)(9 75 20 25)(10 76 17 26)(11 73 18 27)(12 74 19 28)(13 77 24 52)(14 78 21 49)(15 79 22 50)(16 80 23 51)(29 34 63 55)(30 35 64 56)(31 36 61 53)(32 33 62 54)(41 114 69 86)(42 115 70 87)(43 116 71 88)(44 113 72 85)(45 91 101 84)(46 92 102 81)(47 89 103 82)(48 90 104 83)(65 93 117 125)(66 94 118 126)(67 95 119 127)(68 96 120 128)
(1 122 60 108)(2 121 57 107)(3 124 58 106)(4 123 59 105)(5 100 111 38)(6 99 112 37)(7 98 109 40)(8 97 110 39)(9 87 20 115)(10 86 17 114)(11 85 18 113)(12 88 19 116)(13 83 24 90)(14 82 21 89)(15 81 22 92)(16 84 23 91)(25 42 75 70)(26 41 76 69)(27 44 73 72)(28 43 74 71)(29 125 63 93)(30 128 64 96)(31 127 61 95)(32 126 62 94)(33 118 54 66)(34 117 55 65)(35 120 56 68)(36 119 53 67)(45 80 101 51)(46 79 102 50)(47 78 103 49)(48 77 104 52)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,74,24,29)(2,75,21,30)(3,76,22,31)(4,73,23,32)(5,67,104,86)(6,68,101,87)(7,65,102,88)(8,66,103,85)(9,78,56,39)(10,79,53,40)(11,80,54,37)(12,77,55,38)(13,63,60,28)(14,64,57,25)(15,61,58,26)(16,62,59,27)(17,50,36,98)(18,51,33,99)(19,52,34,100)(20,49,35,97)(41,108,95,83)(42,105,96,84)(43,106,93,81)(44,107,94,82)(45,115,112,120)(46,116,109,117)(47,113,110,118)(48,114,111,119)(69,122,127,90)(70,123,128,91)(71,124,125,92)(72,121,126,89), (1,100,60,38)(2,97,57,39)(3,98,58,40)(4,99,59,37)(5,108,111,122)(6,105,112,123)(7,106,109,124)(8,107,110,121)(9,75,20,25)(10,76,17,26)(11,73,18,27)(12,74,19,28)(13,77,24,52)(14,78,21,49)(15,79,22,50)(16,80,23,51)(29,34,63,55)(30,35,64,56)(31,36,61,53)(32,33,62,54)(41,114,69,86)(42,115,70,87)(43,116,71,88)(44,113,72,85)(45,91,101,84)(46,92,102,81)(47,89,103,82)(48,90,104,83)(65,93,117,125)(66,94,118,126)(67,95,119,127)(68,96,120,128), (1,122,60,108)(2,121,57,107)(3,124,58,106)(4,123,59,105)(5,100,111,38)(6,99,112,37)(7,98,109,40)(8,97,110,39)(9,87,20,115)(10,86,17,114)(11,85,18,113)(12,88,19,116)(13,83,24,90)(14,82,21,89)(15,81,22,92)(16,84,23,91)(25,42,75,70)(26,41,76,69)(27,44,73,72)(28,43,74,71)(29,125,63,93)(30,128,64,96)(31,127,61,95)(32,126,62,94)(33,118,54,66)(34,117,55,65)(35,120,56,68)(36,119,53,67)(45,80,101,51)(46,79,102,50)(47,78,103,49)(48,77,104,52)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,74,24,29)(2,75,21,30)(3,76,22,31)(4,73,23,32)(5,67,104,86)(6,68,101,87)(7,65,102,88)(8,66,103,85)(9,78,56,39)(10,79,53,40)(11,80,54,37)(12,77,55,38)(13,63,60,28)(14,64,57,25)(15,61,58,26)(16,62,59,27)(17,50,36,98)(18,51,33,99)(19,52,34,100)(20,49,35,97)(41,108,95,83)(42,105,96,84)(43,106,93,81)(44,107,94,82)(45,115,112,120)(46,116,109,117)(47,113,110,118)(48,114,111,119)(69,122,127,90)(70,123,128,91)(71,124,125,92)(72,121,126,89), (1,100,60,38)(2,97,57,39)(3,98,58,40)(4,99,59,37)(5,108,111,122)(6,105,112,123)(7,106,109,124)(8,107,110,121)(9,75,20,25)(10,76,17,26)(11,73,18,27)(12,74,19,28)(13,77,24,52)(14,78,21,49)(15,79,22,50)(16,80,23,51)(29,34,63,55)(30,35,64,56)(31,36,61,53)(32,33,62,54)(41,114,69,86)(42,115,70,87)(43,116,71,88)(44,113,72,85)(45,91,101,84)(46,92,102,81)(47,89,103,82)(48,90,104,83)(65,93,117,125)(66,94,118,126)(67,95,119,127)(68,96,120,128), (1,122,60,108)(2,121,57,107)(3,124,58,106)(4,123,59,105)(5,100,111,38)(6,99,112,37)(7,98,109,40)(8,97,110,39)(9,87,20,115)(10,86,17,114)(11,85,18,113)(12,88,19,116)(13,83,24,90)(14,82,21,89)(15,81,22,92)(16,84,23,91)(25,42,75,70)(26,41,76,69)(27,44,73,72)(28,43,74,71)(29,125,63,93)(30,128,64,96)(31,127,61,95)(32,126,62,94)(33,118,54,66)(34,117,55,65)(35,120,56,68)(36,119,53,67)(45,80,101,51)(46,79,102,50)(47,78,103,49)(48,77,104,52) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,74,24,29),(2,75,21,30),(3,76,22,31),(4,73,23,32),(5,67,104,86),(6,68,101,87),(7,65,102,88),(8,66,103,85),(9,78,56,39),(10,79,53,40),(11,80,54,37),(12,77,55,38),(13,63,60,28),(14,64,57,25),(15,61,58,26),(16,62,59,27),(17,50,36,98),(18,51,33,99),(19,52,34,100),(20,49,35,97),(41,108,95,83),(42,105,96,84),(43,106,93,81),(44,107,94,82),(45,115,112,120),(46,116,109,117),(47,113,110,118),(48,114,111,119),(69,122,127,90),(70,123,128,91),(71,124,125,92),(72,121,126,89)], [(1,100,60,38),(2,97,57,39),(3,98,58,40),(4,99,59,37),(5,108,111,122),(6,105,112,123),(7,106,109,124),(8,107,110,121),(9,75,20,25),(10,76,17,26),(11,73,18,27),(12,74,19,28),(13,77,24,52),(14,78,21,49),(15,79,22,50),(16,80,23,51),(29,34,63,55),(30,35,64,56),(31,36,61,53),(32,33,62,54),(41,114,69,86),(42,115,70,87),(43,116,71,88),(44,113,72,85),(45,91,101,84),(46,92,102,81),(47,89,103,82),(48,90,104,83),(65,93,117,125),(66,94,118,126),(67,95,119,127),(68,96,120,128)], [(1,122,60,108),(2,121,57,107),(3,124,58,106),(4,123,59,105),(5,100,111,38),(6,99,112,37),(7,98,109,40),(8,97,110,39),(9,87,20,115),(10,86,17,114),(11,85,18,113),(12,88,19,116),(13,83,24,90),(14,82,21,89),(15,81,22,92),(16,84,23,91),(25,42,75,70),(26,41,76,69),(27,44,73,72),(28,43,74,71),(29,125,63,93),(30,128,64,96),(31,127,61,95),(32,126,62,94),(33,118,54,66),(34,117,55,65),(35,120,56,68),(36,119,53,67),(45,80,101,51),(46,79,102,50),(47,78,103,49),(48,77,104,52)])

Matrix representation G ⊆ GL6(𝔽5)

300000
020000
002000
000300
000030
000002
,
400000
010000
003000
000300
000040
000001
,
100000
010000
001000
000100
000020
000003
,
010000
100000
000100
001000
000001
000040

G:=sub<GL(6,GF(5))| [3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;

44 conjugacy classes

class 1 2A···2G4A···4AB4AC···4AJ
order12···24···44···4
size11···12···28···8

44 irreducible representations

dim11111222
type++++++-
imageC1C2C2C2C2D4Q8C4○D4
kernelC4218Q8C43C428C4C23.67C23C2×C4⋊Q8C42C42C2×C4
# reps114824816

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{18}Q_8
% in TeX

G:=Group("C4^2:18Q8");
// GroupNames label

G:=SmallGroup(128,1594);
// by ID

G=gap.SmallGroup(128,1594);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,456,758,184,2019,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽